Este es el argumento de San Anselmo:
Fuente: El libro de la Filosofía, editorial Akal
Este mismo argumento lo "matematizó" el lógico Kurt Gödel en el siglo XX
- Axioma 1. (Dicotomía) Una propiedad es positiva si, y sólo si, su negación es negativa.
- Axioma 2. (Cierre) Una propiedad es positiva si contiene necesariamente una propiedad positiva.
- Teorema 1. Una propiedad positiva es lógicamente consistente (por ejemplo, existe algún caso particular).
- Definición. Algo es semejante-a-Dios si, y solamente si, posee todas las propiedades positivas.
- Axioma 3. Ser semejante-a-Dios es una propiedad positiva.
- Axioma 4. Ser una propiedad positiva (lógica, por consiguiente) es necesaria.
- Definición. Una propiedad P es la esencia de x si, y sólo si, x contiene a P y P es necesariamente mínima.
- Teorema 2. Si x es semejante-a-Dios, entonces ser semejante-a-Dios es la esencia de x.
- Definición. NE(x): x existe necesariamente si tiene una propiedad esencial.
- Axioma 5. Ser NE es ser semejante-a-Dios.
- Teorema 3. Existe necesariamente alguna x tal que x es semejante-a-Dios.